

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level in Chemistry (WCH15) Paper 01:Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P70956A
Publications Code WCH15_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
- / means that the responses are alternatives and either answer should receive full credit.
- () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A (multiple choice)

Question	Correct Answer	Mark
Number		
1 (a)	The only correct answer is B (Fe ²⁺)	(1)
	A is incorrect because Cl^- and S_2Os^{2-} ions are both negative so likely to repel	
	C is incorrect because Cu^{2+} cannot oxidise I^-	
	$m{D}$ is incorrect because Cu^+ cannot oxidise I^-	

Question	Correct Answer	Mark
Number		
1(b)	The only correct answer is D (homogeneous)	(1)
	A is incorrect because the catalyst is not a product of the reaction	
	B is incorrect because the catalyst is not an enzyme	
	C is incorrect because the catalyst is not in a different physical state to the reactants	

Question	Correct Answer	Mark
Number		
1 (c)	The only correct answer is D (sulfuric acid)	(1)
	A is incorrect because ammonia is produced in industry using an iron catalyst	
	B is incorrect because nitic acid is produced in industry using a platinum / rhodium catalyst	
	C is incorrect because sodium hydroxide is produced in industry by electrolysis of brine, without a catalyst	

(Total for Question 1 = 3 marks)

Question	Correct Answer	Mark
Number		
2(a)	The only correct answer is A $(H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(1) + 2e^-)$	(1)
	B is incorrect because it is the reverse of the reaction at the negative electrode	
	C is incorrect because it is the reaction at the positive electrode	
	Dig in compact because it is the neverse of the negation at the positive electrode	
	D is incorrect because it is the reverse of the reaction at the positive electrode	

Question	Correct Answer	Mark
Number		
2(b)	The only correct answer is C (the catalyst is more efficient)	(1)
	A is incorrect because the overall reaction is the same	
	B is incorrect because the overall reaction is the same	
	D is incorrect because the overall reaction is the same	

(Total for Question 2 = 2 marks)

Question Number	Correct Answer	Mark
3	The only correct answer is C (green)	(1)
	A is incorrect because thiosulfate ions will reduce vanadate(V) to oxidation state = $+3$	
	$\textbf{\textit{B}}$ is incorrect because thiosulfate ions will reduce vanadate(V) to oxidation state = +3	
	$m{D}$ is incorrect because thiosulfate ions will not reduce vanadate(V) to oxidation state = $+2$	

(Total for Question 3 = 1 mark)

Question Number	Correct Answer	Mark
4	The only correct answer is C Only Pt NH3 NH3 A is incorrect because it is not used in the treatment of cancer B is incorrect because it is not used in the treatment of cancer D is incorrect because it is the trans form of a complex used in the treatment of cancer	(1)

(Total for Question 4 = 1 mark)

Question	Correct Answer	Mark
Number		
5	The only correct answer is A (NaOH(aq))	(1)
	B is incorrect because the $Cr_2O_7^{2-} + H_2O \rightleftharpoons 2CrO_4^{2-} + 2H^+$ would move to the left on addition of acid	
	C is incorrect because zinc would reduce $Cr_2O_7^{2-}$	
	$m{D}$ is incorrect because hydrogen peroxide is used to oxidise Cr^{3+} to form $Cr_2O_7{}^{2-}$	

(Total for Question 5 = 1 mark)

Question Number	Correct Answer	Mark
6	The only correct answer is C (31.25)	(1)
	A is incorrect because an incorrect expression to find uncertainty is used and only one burette reading is taken into account	
	B is incorrect because only one burette reading is taken into account	
	D is incorrect because it is simply the % uncertainty multiplied by 100	

Question	Correct Answer	Mark
Number		
7(a)	The only correct answer is B (62.5 %)	(1)
	A is incorrect because the two carbonyl carbon atoms have not been included	
	C is incorrect because the hydrogen atoms have not been included	
	D is incorrect because two additional carbon atoms have been included	

(Total for Question 6 = 1 mark)

Question Number	Correct Answer	Mark
7(b)	The only correct answer is B (3)	(1)
	$m{A}$ is incorrect because the carbons in the benzene ring are not all in the same environment	
	$oldsymbol{C}$ is incorrect because there are only 2 different carbon environments in the benzene ring	
	$m{D}$ is incorrect because there are only 2 different carbon environments in the benzene ring	

Question	Correct Answer	Mark
Number		
7 (c)	The only correct answer is A (a single type of monomer by an addition reaction)	(1)
	B is incorrect because the polymer is not formed by a condensation reaction	
	C is incorrect because the polymer is not formed by two different types of monomer	
	D is incorrect because the polymer is not formed by two different types of monomer or a condensation reaction	

(Total for Question 7 = 3 marks)

Question Number	Correct Answer	Mark
8	The only correct answer is D	(1)
	——-	
	A is incorrect because it is the phenylammonium ion	
	B is incorrect because the bonding and charge is incorrect on the right hand nitrogen	
	C is incorrect because the structure is an amine with a positive charge	

(Total for Question 8 = 1 mark)

Question Number	Correct Answer	Mark		
9(a)	The only correct answer is B (ether)			
	A is incorrect because it would protonate the Grignard reagent			
	C is incorrect because it is non-polar			
	D is incorrect because it would react with the Grignard reagent to form a tertiary alcohol			

Question Number	Correct Answer	Mark
9(b)	The only correct answer is D (to ensure the solvent boils smoothly)	
	$oldsymbol{A}$ is incorrect because the anti-bumping granules will not change the boiling temperature	
	B is incorrect because this is the role of the condenser	
	$oldsymbol{C}$ is incorrect because the anti-bumping granules will not affect the flammability of the solvent	

Question Number	Correct Answer	Mark
9(c)	The only correct answer is D (negative and nucleophilic)	(1)
	A is incorrect because the carbon atom is not positive or electrophilic	
	B is incorrect because the carbon atom is not positive	
	C is incorrect because the carbon atom is not electrophilic	

Question	Correct Answer	Mark
Number		
9(d)	The only correct answer is A (hexan-3-one)	(1)
	B is incorrect because the product would be 2,4-dimethyloctan-4-ol	
	C is incorrect because hexan-3-ol does not have a carbonyl bond	
	D is incorrect because hexan-2-ol does not have a carbonyl bond	

(Total for Question 9 = 4 marks)

Question Number	Correct Answer	Mark
10(a)	The only correct answer is D HO NH2	(1)
	A is incorrect because this ion would form in an acidic solution	
	B is incorrect because this is the zwitterion	
	C is incorrect because the OH group would not lose a proton	

Question	Correct Answer	Mark
Number		
10(b)	The only correct answer is B (ionic bonds)	(1)
	A is incorrect because ionic bonds are far stronger than any hydrogen bonds	
	C is incorrect because ionic bonds are far stronger than any London forces	
	D is incorrect because the formation of a peptide bond forms a dipeptide	

(Total for Question 10 = 2 marks)

Question Number	Correct Answer	Mark
11	The only correct answer is A (more reactive and higher electron density)	
	B is incorrect because phenol has a higher electron density	
	C is incorrect because phenol is not less reactive	
	D is incorrect because phenol is not less reactive and has a higher electron density	

(Total for Question 11 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Additional Guidance	Mark
12(a)(i)	 An answer that makes reference to the following points: circle around arrow from +CH₃ to ring (wrong direction) (1) circle around arrow from bond attached to H, to partial ring (single-headed arrow) (1) 	CH ₃ Cl + AlCl ₃ CH ₃ CH ₃ CH ₃ CH ₃ H H H H H H H H H H H H H	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
12(a)(ii)	 An answer that makes reference to the following points: arrow should move from ring / arrow is going the wrong way and ring is electron-rich / as ring cannot accept electrons / as +CH3 does not have a lone pair (of electrons) / as +CH3 needs to gain electrons / as +CH3 is an electrophile (1) arrow (from C-H bond) should be double-headed and as both electrons in the bond pair move (to complete the ring) / as moving a single electron would not complete the ring / as moving a single electrons would form (free) radicals (1) 	If no other credit awarded, then 1 mark can be given for both corrections correctly identified	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
12(b)	An answer that makes reference to one of the following points:	Allow methylbenzene is (more) reactive (than benzene) and	(1)
	• to prevent further substitutions (of nitro groups)	because a methyl group is electron releasing	
		Allow ring in methylbenzene is (more) electron-rich (than benzene)	
		Allow forms dinitrobenzene / trinitrobenzene	
		Ignore further reactions / forms other products	

Question Number	Acceptable Answers	Additional Guidance	Mark
12(c)	An answer that makes reference to the following point:		(1)
		Allow oxidation and reduction /	
	 oxidation 	oxidation and redox	
		Ignore references to redox	

Question Number	Acceptable Answers	Additional Guidance	Mark
12(d)	An answer that makes reference to the following point:	Accept correct names Allow Zn as alternative to Sn	(1)
	• Sn and (concentrated) HCl	Ignore references to concentration or state of HCl Ignore any references to heat / temperature	
		Ignore addition of NaOH after reaction with Sn and HCl	

Question Number	Acceptable Answers	Additional Guidance	Mark
12(e)	An explanation that makes reference to three of the following points:		(3)
	• (carbonyl) carbon is electron-deficient / has a partial positive charge	Allow M1, M2 and M3 on a clearly annotated diagram	
	• nitrogen (on NH ₂ group) has a lone pair (of electrons)	Ignore references to delocalisation	
	 which move to (carbonyl) carbon (to form bond) / which form a bond with the (carbonyl) carbon 		
	Cl is a good leaving group / bond to Cl breaks / C-Cl bond pair moves to Cl		
		Ignore references to nucleophilic substitution / nucleophilic addition-	
		elimination	

Question Number	Acceptable Answers		Additional Guidance	Mark
12(f)			Example of calculation	(4)
	 calculation of moles of 2-ethanoylaminobenzoic acid (1) 	[$5.92 \div 179 = 0.033073 \text{ (mol)} / 3.3073 \text{ x } 10^{-2}$	
	 calculation of moles of benzene required, taking into account the overall percentage yield 	(1)	$0.033073 \times (100 \div 28.2) = 0.11728 \text{ (mol)}$	
	• calculation of mass of benzene	(1)	$0.11728 \times 78 = 9.1477 \text{ (g)}$	
	• calculation of volume of benzene to 1/2/3 SF	(1)	$9.1477 \div 0.879 = 10.407$ = 10.4 / 10 cm ³	
			Ignore absence of units but do not award incorrect units. Marks 2 – 4 can be in any order	
			Allow TE throughout Answer of 10 cm ³ with no working scores	
			M4 only Correct answer with some working scores 4	

(Total for Question 12 = 14 marks)

Question Number	Acceptable Answers				Additional Guidance	Mark
13	This question assesses the student logically structured answer with Marks are awarded for indicative structured and shows lines of reat The following table shows how to indicative content. Number of indicative marking points seen in answer 6 5-4 3-2 1 0 The following table shows how to and lines of reasoning	linkage contersoning he man Numb indica	es and fully sustained reasont and for how the answer is the should be awarded for the er of marks awarded for active marking points 4 3 2 1 0 cks should be awarded for sex	oning. is structure ed for	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield and overall score of 3 marks (3 marks for indicative content and zero marks for linkages). In general it would be expected that	
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured was some linkages and lines of reasoning demonstrated throughout.	ith oning	5 or 6 indicative points would reasoning marks, and 3 or 4 indicative points would get 1 indicative points would get 1 indicative points would score indicative points would score marks for reasoning.	5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero		
	Answer has no linkages between		1		marks for reasoning.	

Indicative Points

Similarities

IP1 both alkalis initially react to give a green precipitate

IP2
$$[Ni(H_2O)_6]^{2+} + 2OH^- \rightarrow [Ni(H_2O)_4(OH)_2] + 2H_2O / [Ni(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Ni(H_2O)_4(OH)_2] + 2NH_4^+$$

IP3 these are deprotonation reactions

Differences

IP4 with excess ammonia (the green precipitate dissolves to) form a blue solution **and** no change with sodium hydroxide

IP5
$$[Ni(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+} + 6H_2O / [Ni(H_2O)_4(OH)_2] + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+} + 4H_2O(1) + 2OH^- / Ni(OH)_2 + 6NH_3 \rightarrow Ni(NH_3)_6^{2+} + 2OH^-$$

IP6 with excess ammonia it is ligand exchange

Comment

in equations allow use of round brackets instead of square brackets

Allow solid / crystals / ppt / ppte

Allow $Ni^{2+} + 2OH^{-} \rightarrow Ni(OH)_{2}$ $NiSO_{4} + 2NaOH \rightarrow Ni(OH)_{2} +$ $Na_{2}SO_{4}$ Allow acid-base reaction

Ignore precipitation reaction / neutralisation reaction

Do not award blue-green or bluepurple solution

Allow $[Ni(H_2O)_6]^{2+} + 4NH_3 \rightarrow$ $[Ni(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$ Ignore state symbols in IP2 and IP5, even if incorrect Ignore omission of square brackets

Allow ligand substitution

(Total for Question 13 = 6 marks)

Question Number	Acceptable Answers	Additional	Guidance			Mark
14(a)		Example of	calculation			(4)
	• calculation of mass of C and H	Element	С	Н	О	
	calculation of mass of oxygen	Mass (g)	18.07 x (12÷44) = 4.9282	3.30 x (2÷18) = 0.36667	6.02 – (4.9282+0.36667) =0.72513	
	• calculation of moles of C, H	Moles (mol) Ratio	4.9282 ÷12 =0.41068 0.41068÷0.045320	0.36667÷1 = 0.3667 0.36667÷0.045320	0.72513 ÷ 16 = 0.045320 0.045320÷0.045320	
	 and O (1) calculation of ratio and deduction of empirical formula (1) 	C ₉ H ₈ O	= 9.06	= 8.09	= 1	
		Allow TE th	nroughout or rounding errors in M	M1-M3		

Question Number	Acceptable Answers	Additional Guidance	Mark
14(b)	 An explanation that makes reference to the following points: correct structure of Q shown (1) sooty flame indicates benzene ring / arene / phenyl group / high C: H ratio / aromatic (1) orange precipitate with 2,4-dinitrophenylhydrazine indicates carbonyl group / C=O / aldehyde or ketone (1) silver precipitate with Tollens' reagent indicates aldehyde (1) 	Accept cis structure Accept skeletal structure without terminal hydrogen Accept hybrid structures e.g. partially displayed Ignore 'it is an alkene'	(6)
	 decolourises bromine water indicates C=C bond / alkene (functional group) / unsaturated (1) exists as a pair of geometric isomers indicates only 1 hydrogen atom on each carbon of the C=C bond / each carbon of the C=C has two different groups attached (1) 	Ignore references to phenol Do not award benzene Allow 'cannot have -CH=CH2 group' Allow '2 different groups on each side of the C=C bond'	

(Total for Question 14 = 10 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
15(a)(i)	• Cr ₂ O ₇ ²⁻ orange and	Do not award precipitate	(1)
	Cr ³⁺ green	Do not award blue Ignore adjectives e.g. 'dark', 'pale' etc	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(a)(ii)	colour change (from orange to green at end-point) is not distinctive / colour change (from orange to green at end-point) is not sharp enough (without indicator) / colour change (at end-point) not easy to detect (without indicator)	Allow solutions (very) dilute so colour change hard to see (without indicator) Allow intense red-violet colour is not masked by colours of chromium species	(1)
		Allow idea that (all) chromium / /iron species are coloured so the change is not easy to detect (without indicator)	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(a)(iii)	• calculation of moles of ammonium iron(II) sulfate (1)	Example of calculation $3.24 \times 10^{-4} \times (10.90/1000) = 3.5316 \times 10^{-6}$ (mol)	(5)
	• calculation of moles of dichromate(VI) in titre (1)	$3.5316 \times 10^{-6} \div 6 = 5.8860 \times 10^{-7} $ (mol)	
	 calculation of moles of dichromate(VI) in original sample 	$5.8860 \times 10^{-7} \times 2 = 1.1772 \times 10^{-6} \text{ (mol)}$	
	 calculation of mass of potassium dichromate(VI) in original sample 	$1.1772 \times 10^{-6} \times 294.2 = 3.4633 \times 10^{-4} \text{ (g)}$	
	 calculation of % by of potassium dichromate(VI) in g of cement (1)	$\frac{(3.4633 \times 10^{-4})}{50} \times 100 = 6.9266 \times 10^{-4} \%$	
		Allow TE throughout, but for M5 TE % must be less than 100 % Ignore SF Correct answer with or without working scores (5)	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(b)	 An explanation that makes reference to the following points: as it reacts with the COOH group to form COO⁻ / sodium carboxylate / a salt (1) sodium salts are (more) soluble in water (than the acid) (1) 	Allow ions are solvated by water / interact with water (more readily) Allow 'forms ionic substances which are more soluble in water'	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
15(c)(i)	An explanation that makes reference to the following points:		(3)
	• lone pair(s) of electrons on nitrogen (atoms) (1)	Allow lone pairs shown on diagram for M1 and M2 Ignore references to lone pairs on oxygen	
	 lone pair on one of the nitrogen (atoms) on the left of the C=O and lone pair on one of the nitrogen (atoms) on the right of the C=O (1) 	Do not award M2 if four lone pairs are referenced unless it's clear that only 2 of them, one from either side of the carbonyl carbon, form the bonds	
	 Which form 2 dative (covalent) bonds (to the chromium ion) (1) 	Allow dative (covalent) bonds shown on diagram	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(c)(ii)	chromium(VI) has an empty d subshell	Allow empty d orbitals (plural) Allow empty d orbital (singular) if	(1)
		clarified by correct electron	
		configuration of ion	
		Ignore idea that d orbitals do not split	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(d)	An explanation that makes reference to the following points: • (reaction has) 5 particles on the left, but 7 on the right (1)	Allow more particles on the right hand side (than on the left hand side) / increase in number of moles (of particles) Do not award use of molecules for	(2)
		particles Do not award incorrect numbers of particles	
	 so there is a (pronounced) increase in entropy (of the system) / change in entropy (of the system) is positive / ΔS_(system) is positive 	Allow so there is a (pronounced) increase in disorder (of the system) Ignore there is a (pronounced) increase in total entropy M2 dependent on M1 or near miss e.g. use of 'molecules' in M1, increasing but incorrect number of particles in M1	

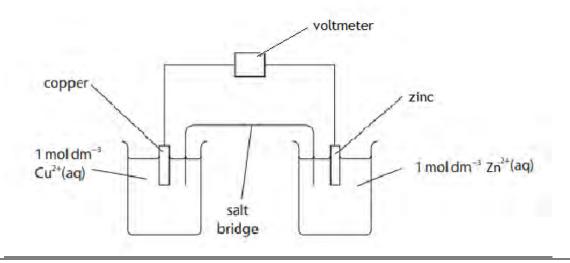
(Total for Question 15 = 15 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
16	An answer that makes reference to the following points:	See below	(6)
	• formation of 2-bromobutane using HBr (1)	Allow HCl and 2-chlorobutane	
	• use of ethanolic KCN / alcoholic KCN / KCN(eth) (1)	Must be in context of attempted reaction with a haloalkane	
	• formation of 2-methylbutanenitrile (1)	Allow CN ⁻ / Ignore HCN	
	• using HCl(aq) (1)	Accept any strong mineral acid Allow H ⁺	
	• formation of 2-methylbutanoic acid (1)		
	• formation of ethyl 2-methylbutanoate using ethanol and sul acid (1)	furic Allow any strong mineral acid Allow H ⁺ Do not award just 'acid'	
	OR • formation of 2-bromobutane using HBr (1)	Do not award just acid	
	• using magnesium in (dry) ether (1)	Must be in context of attempted reaction with a haloalkane	
	• formation of sec-butyl magnesium bromide (1)		
	• using CO ₂ and HCl(aq) (1)	Allow H ⁺ / acid work up Do not award just 'acid' Accept any strong mineral acid	
	• formation of 2-methylbutanoic acid (1)	Allow U+	
	 formation of ethyl 2-methylbutanoate using ethanol and sul acid (1) 	furic Allow H ⁺ Do not award just 'acid'	

(Total for Question 16 = 6 marks)

(TOTAL FOR SECTION B = 51 MARKS)

Question Number	Acceptable Answers	Additional Guidance	Mark
17(a)(i)	• calculation of moles of CuSCN (1)	Example of calculation $4.69 \div 121.6 = 0.038569 / 3.8569 \times 10^{-2} \text{ (mol)}$	(4)
	• calculation of moles of Cu (1)	1:1 so = $0.038569 / 3.8569 \times 10^{-2}$ (mol) M2 can be subsumed as part of M3	
	• calculation of mass of Cu (1)	$0.038569 \times 63.5 = 2.4491 \text{ (g)}$	
	calculation of % of Cuand	$(2.4491 \div 2.72) \times 100 = 90.04 \%$	
	statement that it is a gilding metal (1)	Ignore SF except 1 SF Allow TE at each step Note – if TE for M4 gives answer outside range	
	Note – allow 121.5 for M _r of CuSCN in M1 but do not award 64 for copper in M3	of 95-89 % then must be identified as NOT a gilding metal Do not award TE for M4 if answer > 100 % Allow calculation of % of Zn to show whether sample is a gilding metal	


Question Number	Acceptable Answers	Additional Guidance	Mark
17(a)(ii)	An explanation that makes reference to the following points:		(3)
	• the E _{cell} data indicates that Cu ²⁺ should not be reduced to Cu ⁺ and	Accept $E_{cell} = -0.02 \text{ V}$ and	
	Cu ⁺ should be reduced to Cu (1)	$E_{cell} = +0.35 \text{ V}$	
	• Cu ²⁺ can be reduced to Cu ⁺ as the conditions must be non-standard and	Allow addition of OH ⁻ ions as alternative for conditions must be non-	
	as the E^{\bullet} values are so close (1)	standard	
	• but Cu ⁺ is not reduced to Cu as the reaction must be kinetically hindered / have a high activation energy / very slow (1)	Allow 'not kinetically favoured'	

Question Number	Acceptable Answers		Additional Guidance	Mark
17(b)	white precipitate forms / precipitate of Zn(H ₂ O) ₄ (OH) ₂ forms	(1)	Accept sufficient NaOH will need to be added to neutralise the excess nitric acid Allow precipitate of Zn(OH) ₂ forms / precipitate of zinc hydroxide forms M1 can be awarded from correct formulae and state symbol in equation, hence fully correct equation with state symbol for solid scores M1 and M2 Allow solid / crystals for ppt	(4)
	• $Zn(H_2O)6^{2+} + 2OH^- \rightarrow Zn(H_2O)4(OH)_2 + 2H_2O$	(1)	Allow $Zn^{2+} + 2OH^{-} \rightarrow Zn(OH)_{2}$	
	• but as excess NaOH(aq) is added, precipitate will dissolve	(1)		
	• due to formation of Zn(OH) ₄ ²⁻	(1)	Correct formulae for M4 can be shown as part of an equation, even if equation is not correct Ignore state symbols even if incorrect Ignore omission of square brackets Ignore comments on validity of	
			procedure	

Question Number	Acceptable Answers	Additional Guidance	Mark
17(c)	An explanation that makes reference to the following points: • zinc ions disrupt layers / disrupt structure of copper ions (1)	Allow reference to atoms zinc ions are a different size to copper ions / zinc ions are larger than copper ions	(2)
		Do not award M1 if particles referred to as molecules or forces referred to as intermolecular forces Allow 'atoms are less likely to slide over each	
	• (so) layers (of copper ions) are less likely to slide over each other (1)	Allow 'atoms are less likely to slide over each other' Allow reverse argument	

Question Number	Acceptable Answers	Additional Guidance	Mark
17(d)(i)	A diagram that makes reference to the following points: • two correctly labelled electrodes (1)		(3)
	 both solutions and concentrations correct (1) 	Allow any soluble zinc and copper salts Allow name or formulae in M1 and M2	
	 salt bridge labelled, touching both solutions and voltmeter shown (1) 	If the solution for the salt bridge is discussed it must be correct Ignore temperature and pressure	

Example of diagram

Question	Acceptable Answers	Additional Guidance	Mark
Number			
17(d)(ii)		Example of calculation	(3)
	 calculation of E for zinc half cell / calculation of E - E^o (1) 	0.34 - 1.09 = -0.75 (V)	
	 insert values in Nernst equation and 	$-0.75 = -0.76 + (0.0260/2) \times \ln[Zn^{2+}]$	
	rearrangement of Nernst equation (1)	$ ln[ion] = (0.01) \times (2/0.026) ln[ion] = 0.769230 $	
	• calculation of [ion] (1)	[ion] = 2.1581 (mol dm ⁻³) Ignore SF except 1SF Allow TE throughout	
	Alternative Route	Allow 1E throughout	
	• calculation of E^{Θ}_{cell} (1)	0.340.76 = 1.10 (V)	
	 insert values in Nernst equation and 	$1.10 = 1.09 + (0.0260/2) \times \ln[Zn^{2+}]$	
	rearrangement of Nernst equation (1)	ln[ion] = (0.01) x (2/0.026) ln [ion] = 0.769230	
	• calculation of [ion] (1)	[ion] = 2.1581 (mol dm ⁻³) Ignore SF except 1SF	
		Allow TE throughout	

(Total for Question 17 = 19 marks) (TOTAL FOR SECTION C = 19 MARKS) TOTAL FOR PAPER = 90 MARKS